MULTISENSOR FUSION AND INTEGRATION

Pankaj Dhumane¹ and Shital Bora²

¹Assistant Professor, Department of Computer Science, Sardar Patel Mahavidyalaya, Chandrapur
Email: pdhumane@rediffmail.com
²Lecturer, Department of Computer Application, Sardar Patel Mahavidyalaya, Chandrapur
Email: sbora01@gmail.com

ABSTRACT

Data fusion is used to combine data from different sources in order to achieve inferences more efficiently. Multisensor integration is the synergistic use of the information provided by multiple sensory devices to assist in the accomplishment of a task by a system. The different levels of multisensor fusion can be used to provide information to a system that can be used for a variety of purposes. The multisensor integration represents a composite of basic functions. A group of n sensors provide input to the integration process. The purpose of this paper is to know the concept of Multisensor Fusion and Integration along with its applications. The papers also specify the direction of research in Multisensor Fusion and Integration field.

Keywords: Multisensor Fusion, Integration, Robotics, Remote sensing, Fault detection

INTRODUCTION

Data fusion is a technique that is used to combine data from multiple sources and gather that information into discrete, actionable items in order to achieve inferences, which will be more efficient and narrowly tailored than if they were achieved by means of disparate sources.

Figure 1. Fusion of data from two sources
Data fusion processes are often categorized as low, intermediate or high, depending on the processing stage at which fusion takes place. Low level data fusion combines several sources of raw data to produce new raw data. The expectation is that fused data is more informative and synthetic than the original inputs.

Sensor Fusion is also known as (multi-sensor) data fusion and is a subset of information fusion. Multisensor integration is the synergistic use of the information provided by multiple sensory devices to assist in the accomplishment of a task by a system. Multisensor fusion refers to any stage in the integration process where there is an actual combination of different sources of sensory information into one representational format.

Multisensor Fusion and Integration

Multisensor Fusion

The fusion of data or information from multiple sensors or a single sensor over time can takes place at different levels of representation. The different levels of multisensor fusion can be used to provide information to a system that can be used for a variety of purposes. Eg. signal level fusion can be used in real time application and can be considered as just an additional step in the overall processing of the signals, pixel level fusion can be used to improve the performance of many image processing tasks like segmentation, and feature and symbol level fusion can be used to provide an object recognition system with additional features that can be used to increase its recognition capabilities.

Multisensor Integration

The multisensor integration represents a composite of basic functions. A group of n sensors provide input to the integration process. In order for the data from each sensor to be used for integration, it must first be effectively modeled. A sensor model represents the uncertainty and error in the data from each sensor and provides a measure of its quality that can be used by the subsequent integration functions. After the data from each sensor has been modeled, it can be integrated into the operation of the system in accord with three different types of sensory processing: fusion, separate operation, and guiding or cueing.

Sensor registration refers to any of the means used to make data from each sensor commensurate in both its spatial and temporal dimensions. If the data provided by a sensor is significantly different from that provided by any other sensors in the system, its influence on the operation of the sensors might be indirect. The separate operation of such a sensor will influence the other sensors indirectly through the effects the sensor has on the system controller and the world model. A guiding or cueing type sensory processing refers to the situation where the data from one sensor is used to guide or cue the operation of other sensors.

The results of sensory processing functions serve as inputs to the world model. A world model is used to store information concerning any possible state of the environment that the system is expected to be operating in. A world model can include both a priori information and recently acquired sensory information. High level reasoning processes can use the world model to make inferences that can be used to detect subsequent processing of the sensory information and the operation of the system controller. Sensor selection refers to any means...
used to select the most appropriate configuration of sensors among the sensors available to the system.

Figure 2. General Pattern of Multisensor Fusion and Integration in System

Applications of Multisensor Fusion and Integration

In recent years, benefits of multisensor fusion have motivated research in a variety of application area as follows:

Robotics

Robots with multisensor fusion and integration enhance their flexibility and productivity in industrial application such as material handling, part fabrication, inspection and assembly. Mobile robot present one of the most important application areas for multisensor fusion and integration. When operating in an uncertain or unknown environment, integrating and tuning data from multiple sensors enable mobile robots to achieve quick perception for navigation and obstacle avoidance. Marge mobile robot equipped with multiple sensors. Perception, position location, obstacle avoidance vehicle control, path planning, and learning are necessary functions for an autonomous mobile robot. Honda humanoid robot is equipped with an inclination sensor that consists of three accelerometer and three angular rate sensors. Each foot and wrist is equipped with a six axis force sensor and the robot head contains four video cameras. Multisensor fusion and integration of vision, tactile, thermal, range, laser radar, and forward looking infrared sensors play a very important role for robotic system.

Military application

It is used in the area of intelligent analysis, situation assessment, force command and control, avionics, and electronic warfare. It is employed for tracking targets such as missiles, aircrafts and submarines.

Remote sensing

Application of remote sensing include monitoring climate, environment, water sources, soil and agriculture as well as discovering natural sources and fighting the important of illegal
drugs. Fusing or integrating the data from passive multispectral sensors and active radar sensors is necessary for extracting useful information from satellite or airborne imagery.

Biomedical application

Multisensor fusion technique to enhance automatic cardiac rhythm monitoring by integrating electrocardiogram and hemodynamic signals. Redundant and complementary information from the fusion process can improve the performance and robustness for the detection of cardiac events including the ventricular activity and the atria activity.

Transportation system

Transportation system such as automatic train control system, intelligent vehicle and high way system, GSP based vehicle system, and navigation air craft landing tracking system utilize multisensor fusion technique to increase the reliability, safety, and efficiency.

FUTURE RESEARCH DIRECTIONS

The current state of the art in multisensor fusion is in continuous development. There are therefore, promising future research areas that encompass multilevel sensor fusion, sensor fault detection, micro sensors and smart sensors, and adaptive multisensor fusion as follows:

Multilevel sensor fusion

Single level sensor fusion limits the capacity and robustness of a system, due to the weakness in uncertainty, missing observation, and incompleteness of a single sensor. Therefore there is a clear need to integrate and fuse multisensor data for advanced system with high robustness and flexibility and the multilevel sensor fusion system is needed in advanced system. There are different levels, low level fusion methods can fuse the multisensor data, and medium level fusion methods can fuse data and feature to obtain fused feature or decision. High level fusion methods can fuse feature and decision to obtain the final decision.

Fault detection

Fault detection has become a critical aspect of advanced fusion system design. Failures normally produce a change in the system dynamics and pose a significant risk. There are many innovative methods have been accomplished.

Micro sensors and smart sensors

Successful application of a sensor depends on sensor performance, cost and reliability. However, a large sensor may have excellent operating characteristics but its marketability is severely limited by its size. Reducing the size of a sensor often increases its applicability through the following.

- Lower weight and greater portability
- Lower manufacturing cost and fewer materials
- Wider range of application.
Clearly, fewer materials are needed to manufacture a small sensor but the cost of materials processing is often a more significant factor. The revolution and semiconductor technology have enabled us to produce small reliable processors in the form of integrated circuits. The microelectronic applications have led to a considerable demand for small sensors or micro sensors that can fully exploit the benefits of IC technology. Smart sensors can integrate main processing, hardware and software. According to the definition proposed by Breckenridge and Husson, a smart sensor must possess three features:

- The ability to perform logical computable functions.
- The ability to communicate with one or more other devices.
- The ability to make a decision using logic or fuzzy sensor data.

Adaptive Multisensor fusion

In general, multisensor fusion requires exact information about the sensed environment. However, in the real world, precise information about the sensed environment is scare and the sensors are not always perfectly functional. Therfore a robust algorithm in the presence of various forms of uncertainty is necessary. Researchers have developed adaptive multisensor fusion algorithm to address uncertainties associated with imperfect sensors.

CONCLUSION

Sensors play an important role in our everyday life because we have a need to gather information and process it for some tasks. Successful application of sensor depends on sensor performance, cost and reliability. The paradigm of multisensor fusion and integration as well as fusion techniques and sensor technologies are used in micro sensor based application in robotics, defense, remote sensing, equipment monitoring, and biomedical engineering and transportation systems. Some directions for future research in multisensor fusion and integration target micro sensors and adaptive fusion techniques. This may be of interest to researches and engineers attempting to study the rapidly evolving field of multisensor fusion and integration.

REFERENCES